Recycled Water Seasonal Storage: Selection of Preferred Alternative

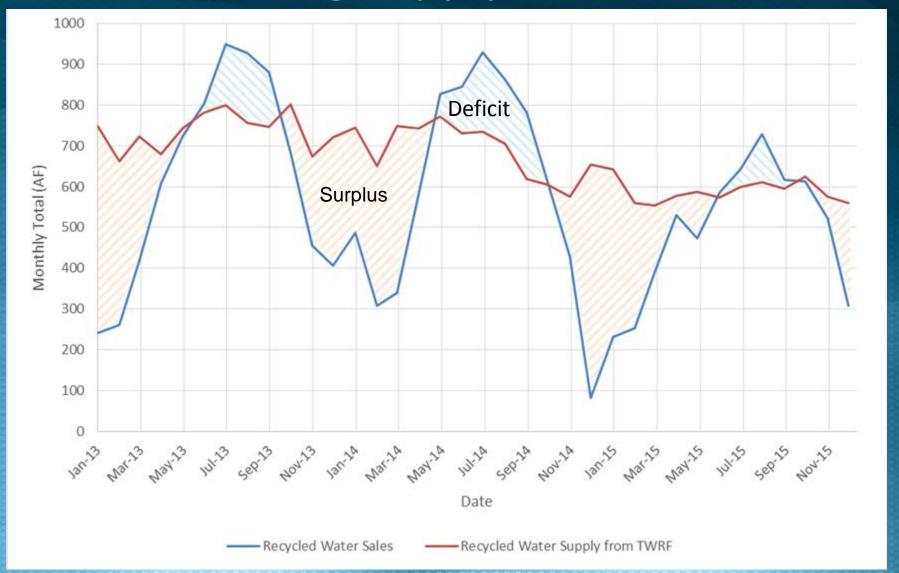
Item 5A August 1, 2016

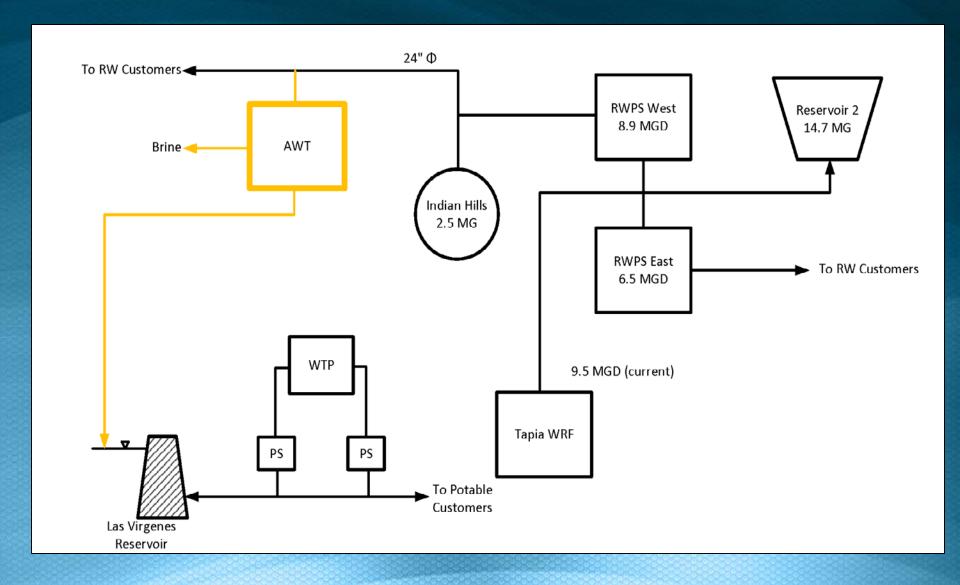
Agenda

- Introduction
- Background, Basis of Design Report and Stakeholder Polling
- Public Outreach
- Funding and Financing Strategy
- Staff Recommendation
- Stakeholder/Public Comment

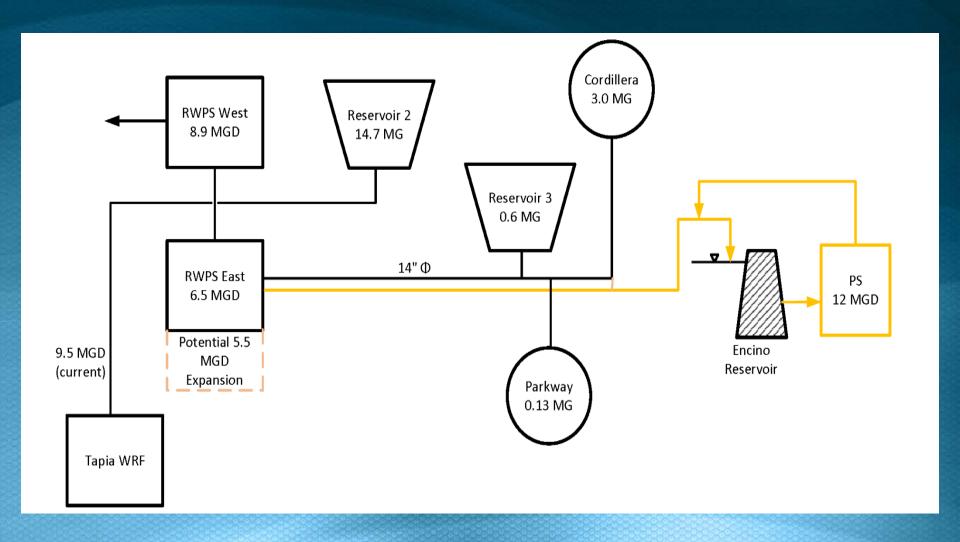
Jim Borchardt

Recycled Water Basis of Design Report


Executive Summary – August 1, 2016


Background

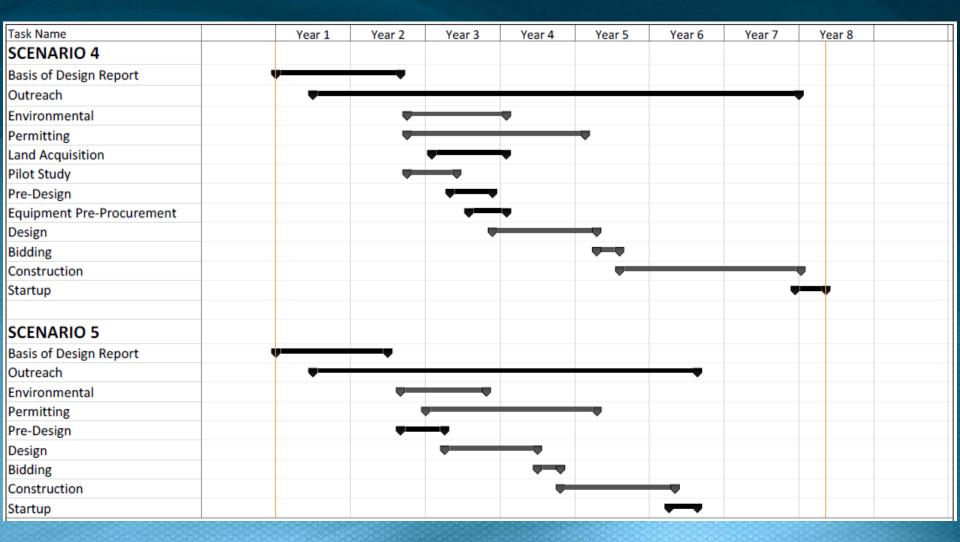
- Increasing regulations for discharging to Malibu Creek
- June 2, 2015 Guiding Principles
- June 19, 2015 Plan of Action
- Basis of Design Report
 - Reservoir management strategy
 - Hydraulic analysis
 - Siting studies
 - Regulatory investigations
 - Schedule and cost development


Project Driver: Balancing Supply & Demand

Scenario 4 - Schematic

Scenario 5 - Schematic

Available Recycled Water Projections for Scenario 4 and 5


Scenario 4							
Year	Supply	Supply plus Average Calculated Imported Supplement (AF)	Demand	Gross Surplus Recycled Water			
2016	7,060 - 9,361	7,349 - 9,650	6,547*	802 – 3,102			
2035	10,590 – 12,320	10,879 – 12,609	6,547*	4,332 – 6,062			
Scenario 5							
Year	Supply	Supply plus Average Calculated Imported Supplement (AF)	Demand*	Gross Surplus Recycled Water			
2016	7,060 – 9,361	7,349 – 9,650	6,547*	802 – 3,102			
2035	10,590 – 12,320	10,879 – 12,609	8,942	1,937 – 3,667			

^{*}Based on fifteen year average of RW demand

Scenario Costs

Description	Scenario 4	Scenario 5	
Estimated Total Capital Costs (rounded)	\$ 95,313,000	\$80,962,000	
Estimated Year 1 O&M	\$2,663,000	\$910,000	
Imported Water Savings	(\$2,373,000)	(\$714,000)	
Net Total O&M (rounded)	\$290,000	\$196,000	
Year 1 Unit Cost per AF	\$1,720	\$1,410	
Present Worth of Annual Costs (Savings)	(\$80,685,000)	(\$21,309,000)	
Net Present Worth (Rounded)	\$13,504,000	\$59,653,000	

Facility Schedule

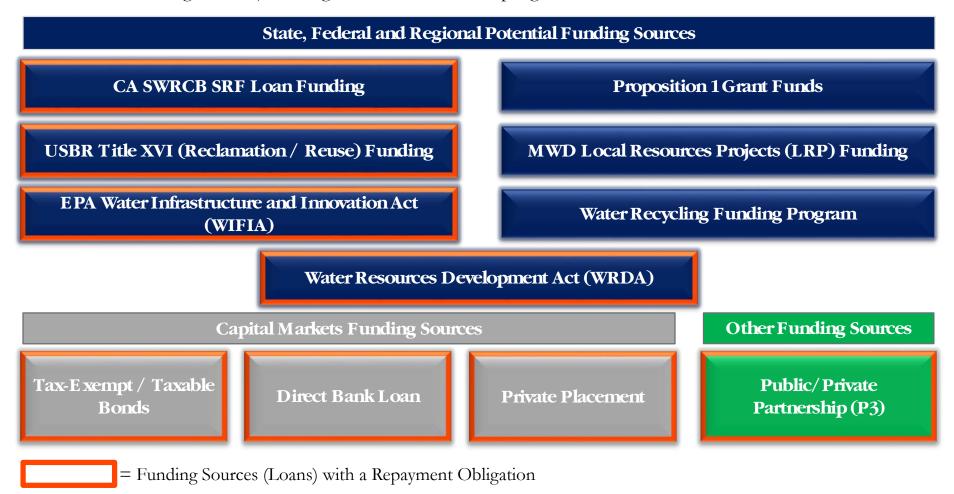
Polling Results

(Which Scenarion is Preferred?)

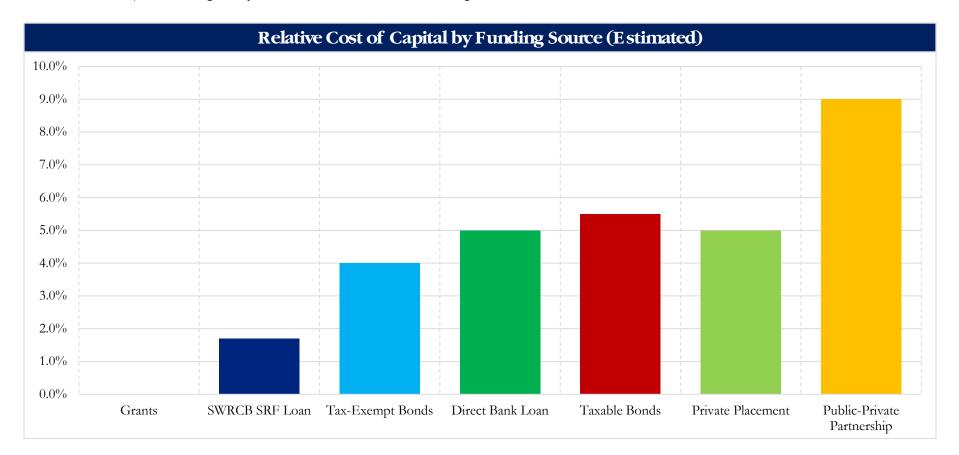
		Scenario 4	Scenario 5	
		iding Principles	_	
	Maximize Beneficial Reuse	22		
	Seek Cost Effective Solutions	22		
	Seek Partnerships beyond JPA	15		
7	Gain Community Support	23		
4	Govern with a Partnership	14		
)	Be Forward Thinking	32	1	
	Subtotal	128	44	
5	Davis 4000/ of Over Water	Objectives	7	
HE.	Reuse 100% of Our Water	25		
	Regional Partnerships			
	Public Support for Project	16		
	Cost/Benefit	21		
	Beneficial to Water Users Including Rate Payers	25		
	Maximize Funding Sources	16		
	Public Perception and Acceptance	12		
io	Eliminate Unreasonable Use and Waste of Water	20		
	Transparency	18		
	Seasonal and Diurnal Equalization	17		
	Balance of Supply and Demand (Right Balance)	26		
	Reduce Reliance on Imported Water	30		
	Regulatory Constraints and Framework	7	19	
	TMDL Compliance in Malibu Creek and Santa Mor			
	Regulations	g		
	Sustainability	26		
	Siting of Reservoirs and other Infrastructure	16		
	Protecting Beneficial Uses in Malibu Creek	16		
	Environmental Stewardship and Leadership	23		
	Subtotal	349	175	
	D	lisk Concerns		
	NIMBY	19	7	
	Agency Coordination	25		
	Project Costs	8		
	Demand	27		
	Water Quality	25		
	Drinking Water Standards	20		
	YUCK (Public Perception)	15		
	Brine Disposal	14		
	CEQA	18		
	Politics	21		
	Right of Way/LAND	17		
	Subtotal	209	110	
	Oubtotal	203	110	
	Grand Total	686	329	

Karen Snyder

Brian Thomas


Seasonal Storage Project Phase 1: Identifying and Evaluating Funding Options

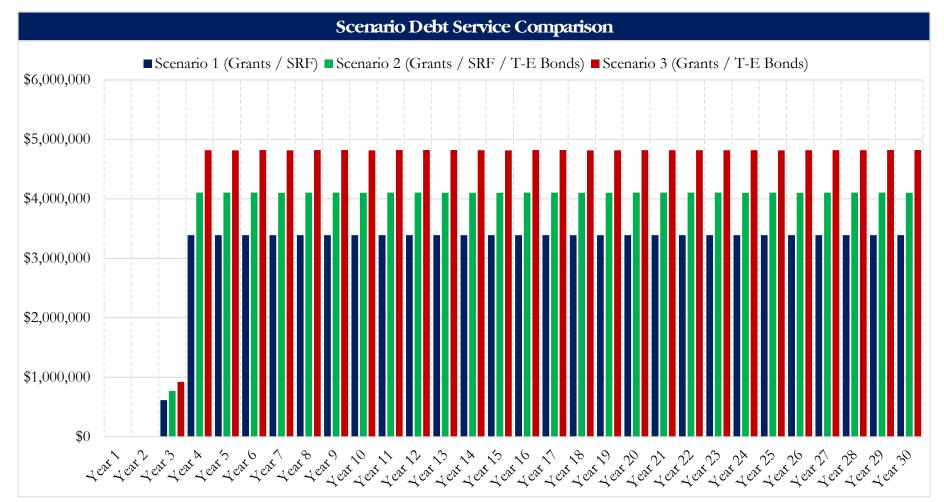
PFM Financial Advisors LLC 601 South Figueroa Street, Suite 4500 Los Angeles, CA 90017 (213) 489-4075 (213) 489-4085 fax www.pfm.com


Identifying Potential Funding Sources

- Potential funding sources for the seasonal storage project include grants, low-cost loans, debt placed in the capital markets and private equity
 - Must be Eligible Project for grant / low-cost loan programs

Funding Source Relative Cost Comparison

- The relative cost of capital varies between different funding sources
 - Each funding source has a unique cost / risk profile
- Grants and SRF loans currently provide the lowest capital cost
 - Subject to capacity limits and increased competition


Scenario Analysis

- Scenario 1 (combination of grants and SRF loans) represents the lowest cost of funds with a weighted average cost of capital of 1.66%
- Scenario 2 represents the most likely scenario with funding procured from three sources (grants, SRF loans, and tax-exempt municipal bonds) and still produces an attractive cost of funds

Potential Funding Scenarios					
Scenario	Scenario 1	Scenario 2	Scenario 3		
Description					
Funding Sources	Grants / SRF	Grants / SRF/ T-E Bonds	Grants / T-E Bonds		
Total Capital Cost	\$95,000,000				
Pay-Go Contribution	\$10,000,000	\$10,000,000	\$10,000,000		
Grant Funding	\$15,000,000	\$15,000,000	\$15,000,000		
SRF Loan (1.663%)	\$70,000,000	\$35,000,000	N/A		
Municipal Bond (4.000%)	N/A	\$35,000,000	\$70,000,000		
Repayment period	30 yrs	30 yrs	30 yrs		
Financing Statistics					
Total Principal Paid	\$73,684,986	\$76,617,493	\$79,550,000		
Total Interest Paid	\$18,434,676	\$34,943,628	\$51,391,034		
Total Debt Service Paid	\$92,119,662	\$111,561,121	\$130,941,034		
NPV of Debt Service (3.50%)	\$51,585,775	\$62,481,332	\$73,377,212		
Average Annual Debt Service	\$3,400,000	\$4,100,000	\$4,820,000		
Weighted Average Cost of Capital	1.66%	2.83%	4.00%		

Scenario Debt Service

- Each scenario capitalizes interest until the project becomes operational (assumed 3-year construction)
- Scenario 3 produces average annual debt service costs of \$4.8 million compared to \$3.4 million for Scenario 1

Project Objectives and Next Steps

- Seasonal Storage Project financing objectives
 - Obtain the lowest cost of borrowing
 - Minimize net impact to rate payers
- Risk Assessment
 - Determine the degree of risk transfer, if any
 - Financing risk
 - Construction risk
 - Operating risk
- Financing Structure
 - JPA financed
 - Individually financed

• Next steps include an assessment of the impact on overall revenues and rates

Discussion

